摘要
由于分布式光伏窃电的稽查难度大,致使相关部门收集的窃电样本数量有限,无法满足基于数据驱动的窃电检测需求。通过数据增强的方式,提出一种基于Wasserstein生成对抗网络(WGAN)的分布式光伏窃电样本数据增强方法。首先,WGAN通过生成网络与判别网络的对抗训练,能够学习到光伏窃电数据序列难以显式建模的时间相关性,可以生成与真实窃电样本具有相近分布的新的窃电样本;然后,根据典型的光伏窃电模型,针对窃电样本的数据特征选用卷积神经网络(CNN)进行窃电检测;最后,通过算例分析,对比不同数据增强方法与分类器,表明WGAN生成的窃电样本能够符合真实样本的波动规律和历史数据的概率分布特征,进而有效改善分类器的检测性能。
- 单位