摘要
Fisher线性判别分析(FLDA,Fisher linear discriminant analysis)是一种经典的线性降维方法,可归结为广义特征值问题的求解,但广义特征值问题的求解的复杂度较高.为了更好地求解FLDA问题,引入了近似梯度下降(PGD,proximal gradient descent)算法,并分析了该算法的收敛性.实验结果表明,相较于求解广义特征值等方法,PGD算法能更高效地求解FLDA问题.
-
单位数学学院; 云南师范大学