摘要
为充分分析关联因素对饱和负荷水平的影响,针对饱和负荷预测不确定性强、时间相关性大的特点,利用长短期记忆神经网络的长期记忆单元与可遗忘机制保存和更新历史用电信息,构建了多输入的长短期记忆神经网络饱和负荷预测模型。首先提取出人口、经济等6个影响因素作为网络模型输入量,采用Adam优化方法训练网络模型,并在多场景下,运用优化后的模型进行饱和负荷预测,结合饱和判据得到最终的饱和时间与用电规模。某省电网的饱和负荷预测结果表明,所建模型及预测方法合理、有效。
-
单位国家电网公司; 电力传输与功率变换控制教育部重点实验室; 上海交通大学