摘要
为提高心拍的分类效果,研究基于双向长短期记忆(BiLSTM)模型的深度学习算法.首先,采用"双斜率"法对心电信号进行预处理;然后,设计自适应阈值对预处理后的心电信号进行QRS波定位,并依据R波波峰分割截取心拍;最后,采用BiLSTM模型的深度学习算法对获取的心拍形态进行分类.使用MIT-BIH心率失常数据库验证算法有效性,实验结果表明:文中算法对正常或束支传导阻滞(N)、室上性异常(S)、心室异常(V)、融合(F)类型的敏感性分别为98.56%,97.10%,93.33%,79.52%,特异性分别为98.38%,98.08%,98.54%,99.65%;与传统的支持向量机等方法相比,文中算法能够进一步提高心拍分类的正确率.
-
单位湖北工业大学; 电子工程学院