摘要

稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想。本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法。首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取;然后对二者进行加权平均特征级融合以获取更具唯一性的像元特征;最后由稀疏多项式逻辑回归分类器对融合结果进行分类。结果表明,本文方法能有效地提高分类精度,而且具有较强的稳健性。

全文