摘要

【背景】条烟分拣线上,条烟长边相邻并排摆放形成一层,多层叠加形成烟包,与订单相比,烟包可能存在少烟、多烟、品规错误等问题,目前采用的人工检查方式效率较低,且难以完全避免错误发生。本研究的目的是构建烟包错配识别系统。【方法】采用由工业相机镜头和光源构成的机器视觉系统采集成品烟包侧面与顶面图像,以基于深度学习的物体定位和识别技术获取烟包中条烟的数量与品规,与物流上位系统订单数据比对,自动识别与提示错误烟包。【结果】(1)实际使用中烟包识别成功率≥99.99%,识别耗时≤300ms。识别过程与原有工作步骤并行,增加识别系统不降低分拣效率。(2)系统上线运行至今有效避免了烟包连续出错和返工问题。(3)识别系统可以减轻搬运工人的工作负担,进而提高工作效率。【结论】采用深度学习机器视觉系统自动化识别烟包品规,可以提升烟草物流条烟分拣的质量和效率。