摘要

基于单尺度纹理和光谱信息的地物分类较难取得理想效果,本文结合多尺度纹理与光谱信息,运用SVM分类方法,对IKONOS遥感影像进行分类。结果表明:结合多尺度纹理和光谱信息的SVM高分辨率遥感影像分类,能够更好地描述地物,分类总体精度达到83.9%,与基于光谱信息的最大似然法和基于单尺度纹理和光谱信息的SVM分类方法比较,分类精度分别提高了13.8%和4.9%,该方法有助于提高高分辨率影像的分类正确率。

  • 单位
    水文水资源与水利工程科学国家重点实验室; 河海大学; 土木工程学院