摘要

目的 探索基于数字乳腺体层合成(DBT)与深度学习的乳腺影像报告和数据系统二分类模型对乳腺良、恶性肿块鉴别的可行性。资料与方法 回顾性分析2020年5月—2021年5月于湖北省武汉市红十字会医院行双侧乳腺DBT并经病理证实或长期随访的289例乳腺肿块图像。采用交互式标注,先由人工智能系统在合成2D乳腺X线片、DBT图像上进行读片,再由1名X线诊断医师对所有数据进行修正标注,并由1名高年资医师审核,将上述数据以2∶1随机分为训练集(192例)与测试集(97例)。分别选择densenet161、googlenet、mobilenet_v3_large、vgg19、resnet152模型进行训练,评价二分类模型诊断乳腺恶性肿块的效能。结果 每个模型效果曲线下面积均大于0.845,其中mobilenet_v3_large准确度最高,为82.47%,其敏感度和特异度分别为87.18%和79.31%。结论 采用深度学习二分类模型对DBT乳腺肿块图片进行良恶性鉴别可行,有望应用于临床。

全文