摘要
目的:针对B超诊断颈动脉斑块的局限性,提出一种基于3类属性预测颈动脉斑块的随机森林方法。方法:基于某院5 993例糖尿病患者的脱敏数据,在已有研究基础上,初步选择影响颈动脉斑块的10个属性(性别、年龄、糖尿病病程、甘油三酯、高密度脂蛋白、低密度脂蛋白、总胆固醇、空腹血糖、糖化血红蛋白和空腹胰岛素),分别利用决策树、逻辑模型树、自助聚合和随机森林等多种机器学习模型来拟合脱敏数据,并通过十折交叉验证来验证拟合性能,最后统计各属性在预测颈动脉斑块中的贡献度。结果:实验表明,随机森林在查准率(0.808)、查全率(0.806)、F1值(0.805)、AUC(0.897)方面均优于其他模型。年龄、低密度脂蛋白和糖化血红蛋白这3个属性对预测颈动脉斑块的贡献度最大,利用这3类属性训练而成的模型可达到不错的预测效果。结论:基于年龄、低密度脂蛋白和糖化血红蛋白等常规指标训练而成的随机森林模型简单、高效、成本低且预测效果好,理论上能够作为诊断颈动脉斑块的辅助方法。
- 单位