摘要
近年来,生成对抗网络(generativeadversarialnetwork,GAN)家族已在人脸年龄合成任务上取得了巨大的成功.然而,通过研究发现,在解决人脸年龄合成的问题时,即使是善于利用年龄先验信息的条件生成对抗网络(conditional generative adversarial network, CGAN),重要的人脸年龄相关信息在一程度上也会被丢弃.这是导致以CGAN为代表的GAN家族在人脸年龄合成上的性能到达瓶颈期的一个重要因素.为此,提出了一种类别注意实例归一化机制(class-aware instance normalization, CAIN).该机制能够灵活地嵌入到CGAN中,形成一种新的生成对抗网络模型,即CAIN-GAN.CAIN-GAN能够充分利用人脸年龄先验信息来进一步提高人脸年龄合成性能.在公开数据集上的实验结果表明,与其他几种GAN家族的方法对比, CAIN-GAN方法仅通过利用人脸年龄相关信息就能对人脸年龄合成性能进行提升.
- 单位