摘要
为了降低因疲劳驾驶而导致的事故发生率,提出一种利用卷积神经网络与人脸特征点、疲劳判定指标相融合的方法,共同构建疲劳驾驶检测模型。首先利用SSD网络定位驾驶员的眼睛与嘴巴区域,VGG16网络学习这两个区域所包含的疲劳特征;同时再结合人脸68特征点、眼睛纵横比(EAR)和嘴巴纵横比(MAR)共同判定驾驶疲劳状态。最后,在相同测试集下分别计算SSD算法和Faster-RCNN算法的平均精度均值mAP;在YawDD数据集上应用此模型;并通过模拟驾车环境来验证此模型的可行性。实验结果表明,SSD算法要优于Faster-RCNN算法,并且此模型在YawDD数据集上的检测准确率约达97.2%,摄像头也能对驾驶员的状态进行实时检测。此模型对疲劳状态的检测十分有效,可在一定程度上降低因疲劳驾驶而导致的事故发生率。
-
单位电子工程学院; 东北石油大学