摘要

为了提高网络监控系统微表情识别的效果,结合深度神经网络技术提出新的智能监控系统微表情识别算法。将判别能力强的卷积神经网络特征与鲁棒的直方图特征结合,利用卷积神经网络提取目标的空间特征,再将卷积特征表示为直方图,结合直方图和卷积神经网络两者的优势设计新的人体追踪算法;设计跨模态监督的深度神经网络训练方法,将可见光视频数据送入深度神经网络进行训练,利用近红外光视频对训练程序进行监督。基于公开的多模态微表情识别数据集完成了验证实验,结果显示该算法有效地提高了微表情识别的性能。