摘要
非侵入式眼睛跟踪在许多基于视觉的人机交互应用中扮演十分重要的角色,但由于眼睛运动的强非线性,如何确保眼睛跟踪过程中对外界干扰的鲁棒性以及跟踪精确度是其应用的关键问题。为提高眼睛跟踪的鲁棒性和精确度,提出强跟踪五阶容积卡尔曼滤波算法(ST-5thCKF),将强跟踪滤波(STF)次优渐消因子引入具有接近最少容积采样点且保持五阶滤波精确度的五阶容积卡尔曼滤波(5thCKF),获取5thCKF对强非线性良好滤波精确度同时具备STF对外界干扰的鲁棒性。真实条件下的实验结果验证了所提算法在眼睛跟踪中的有效性。
-
单位自动化学院; 南京信息职业技术学院; 南京理工大学