摘要
目前深度强化学习中的对抗攻击和防御的研究大多集中在静态图像的分类任务方面,而在动态视频方面的应用研究还存在许多空白。对此,首先在Atari游戏,即动态视频中实现深度Q网络(Deep Q Network,DQN)智能体模型;其次使用快速梯度符号方法(Fast Gradient Sign Method,FGSM)白盒攻击与黑盒攻击、投影梯度下降(Projected Gradient Descent,PGD)攻击和像素攻击对DQN模型进行对抗攻击实验;最后使用基于高斯数据增强的随机化防御和对抗训练方法对这些对抗攻击进行防御实验。实验结果表明,深度强化学习中的对抗攻击和防御在动态视频应用中同样具有有效性。
- 单位