摘要

在推荐系统领域,了解电商平台中在线用户的行为意图至关重要。目前的一些方法通常将用户与商品之间的交互历史数据视为有序的序列,却忽视了不同交互行为之间的时间间隔信息。另外,一个用户的在线行为可能不仅仅包含一种意图,而是包含多种意图。例如,当一位用户在浏览运动品类下的商品时,其可能同时有购买足球和运动衫这两种商品的意图。但是现有的一些电商平台用户意图预测方法很难有效对用户-商品交互对时间间隔信息进行建模,也难以捕捉用户多方面的购物意图。为了解决上述问题,我们提出了一种时间感知分层自注意力网络模型THSNet,以更有效对电商平台的用户意图进行预测。具体而言,THSNet模型采用一种分层注意力机制来有效地捕获用户-商品交互历史中的时间跨度信息以更有效建模用户的多种意图。THSNet模型的注意力层分为两层,底层的注意力层用于建模每个会话内部的用户-商品交互,上层的注意力层学习不同会话之间的长期依赖关系。另外,为了提高预测结果的鲁棒性和准确度,我们采用BERT预训练的方法,通过随机遮盖部分会话的特征表示,构造了一个完形填空任务,并将该任务与用户意图预测任务耦合成为多任务学习模型,这种多任务预测方法有助于模型学到一个具有鲁棒性和双向性的会话特征表示。我们在两个真实数据集上对所提方法对有效性进行了验证。实验结果表明,我们所提出的THSNet模型要明显优于目前最先进的方法。

全文