摘要
为了对车漆进行快速、高效、低成本的无损鉴别,采用一种基于指纹区红外吸收光谱结合决策树、k近邻和Fisher判别分析(DT-KNN-FDA)建模的鉴别方法,进行了理论分析和实验验证。收集并取得了车漆共计60个样本的红外吸收光谱实验数据,通过对特征波数的选择,建立并比较了基于决策树、k近邻分析和Fisher判别分析的多分类模型。通过相关性分析提取到了58组调整数据,并以此为基础构建了分类模型。结果表明,DT分类模型、KNN分类模型和FDA分类模型对各样本的总体区分准确率分别为77.80%,72.31%和85.00%;红外光谱结合DT-KNN-FDA分析可实现对车漆不同品牌产品间的区分,分类效果理想。该方法快捷、低耗、有效,具有一定的普适性和参考意义。
- 单位