深度学习点云质量增强方法综述

作者:陈建文; 赵丽丽; 任蓝草; 孙卓群; 张新峰; 马思伟
来源:中国图象图形学报, 2023, 28(11): 3295-3319.
DOI:10.11834/jig.221076

摘要

随着三维探测技术的发展,点云逐渐成为最常用的三维物体/场景表征数据类型之一,广泛应用于自动驾驶、增强现实及虚拟现实等领域。然而,受限于硬件设备、采集环境以及遮挡等因素,采集的原始点云通常是不完整、稀疏、嘈杂的,为点云的处理和分析带来了巨大挑战。在此背景下,点云质量增强技术旨在对原始点云进行处理以获得结构完整、密集且接近无噪的点云,具有重要意义。本文对现阶段深度学习点云质量增强方法进行了系统综述,为后续研究者提供研究基础。首先,简要介绍了点云数据处理中通用的关键技术;分别介绍了补全、上采样和去噪3类点云质量增强方法,并对3类方法中的现有算法进行了分类、梳理及总结。其中,点云补全与点云去噪算法均可根据是否采用编码器—解码器结构分为两大类,点云上采样算法可根据网络主要结构分为基于卷积神经网络的方法、基于生成对抗网络的方法和基于图卷积神经网络的方法。其次,总结了质量增强任务中常用的数据集与评价指标,并分别对比分析了现阶段点云补全、上采样和去噪中主流算法的性能。最后,通过系统的梳理,凝练出点云质量增强方向所面临的挑战,并对未来的研究趋势进行了展望。此外,本文汇总了涉及的文献及其开源代码,详见链接https://github.com/LilydotEE/Point_cloud_quality_enhancement。

全文