摘要
非约束环境下的人脸定位算法是诸多面部感知应用系统中的关键基础模块,一直是极具挑战性的课题。随着海量训练数据集的出现及深度学习技术的发展,基于深层卷积神经网络的视觉目标检测方法取得了突破性的进展,YOLOv3-Tiny是其中一种具有较高准确率的快速通用目标检测算法,但由于其输出神经元的物理感受野范围会随网络输入尺寸的固定而被限定,使其无法在具有尺度范围跨度过大的非约束人脸检测中充分发挥其检测性能。为了有效扩展YOLOv3-Tiny网络检测神经元的有效感知范围,文章提出了一种基于YOLOv3-Tiny多模型融合方式的快速人脸定位算法。首先根据人脸尺寸对原始图像集的标签数据进行筛选,划分为不同的子集,并利用它们分别对多个具有不同有效感知范围的YOLOv3-Tiny模型进行训练。接着,利用多模型对输入图像独立进行推理,并基于非极大值抑制算法及相应的尺度约束阈值实现检测结果的有效融合。实验结果显示,该算法能够有效利用多模型各自的检测优势,实现跨度尺度范围下的无约束人脸检测,具有重要应用潜力。