摘要
针对输油管道易发生腐蚀问题,建立了遗传算法(GA)优化反向传播神经网络(BPNN)的输油管道内腐蚀速率预测模型,给出了具体的优化流程。运用GA优化BPNN模型的起始权值和阈值,有效避免了单一BPNN模型陷入局部最优的问题发生,从而提升了预测的准确率。以某条输油管线为例,对改进的GA-BPNN模型进行验证和分析,结果表明:BPNN模型预测的最高相对误差高达24.49%,平均相对误差为11.13%。相较于BPNN模型,GA-BPNN模型的预测精度有了较大幅度地提高,最大相对误差仅为8.16%,平均相对误差为3.10%。因此使用GA-BPNN模型预测管道腐蚀情况可为管道的检维修提供可靠的理论依据。
- 单位