摘要
Overexposure to ultraviolet (UV) with high energy can not only hurt human skin but also accelerate the degradation of organic matter. Hence, the preparation of polymer‐based UV‐shielding nanocomposites has attracted substantial attention due to the low cost, easy processing and wide applications. Notably, the highly efficient UV‐shielding polymer nanocomposites are still hindered by the agglomeration of inorganic anti‐UV nanoparticles (Nps) in polymer matrix and the narrow absorption range of UV‐shielding agents. To overcome the aforementioned bottlenecks, surface engineering of anti‐UV Nps including organic modification and inorganic hybridization has been extensively employed to enhance the UV‐shielding efficiency of composites. Herein, to deliver the readers a comprehensive understanding of the surface engineering of anti‐UV Nps, we systematically summarize the recent advances in surface organic modification and inorganic hybridization related to anti‐UV Nps. The UV‐shielding mechanism and the factors affecting UV‐shielding efficiency of polymer nanocomposites are also discussed. Finally, perspectives on remaining challenges and future development of highly efficient UV‐shielding composites are outlined.
- 单位