摘要

高光谱图像噪声评估既是评价图像质量的重要内容,也是衡量传感器性能的重要指标。一般噪声评估方法通过对图像规则分割或利用某种距离准则对图像进行连续性分割,计算图像子块的局部标准差或多元线性回归的残差来实现对图像噪声的估计。但这些方法获取的图像子块并不是完全均匀的,图像子块中仍然会存在地物边界,导致图像噪声评估的结果不准确。为了有效提取图像中的均匀子块,本文提出了一种优化的空间光谱维去相关(OSSDC)方法,基于光谱角距离和欧氏距离双重判定,从光谱曲线的形状和数值上寻找相似像元,获取图像中的均匀子块,然后利用多元线性回归计算残差实现对图像噪声的估算。利用模拟图像和实际航空飞行实验获取的高光谱图像对优化算法进行检验,同时与几种常用噪声评估方法进行对比分析,结果表明优化后的算法计算结果更准确,稳定性和适用性优于其他方法。