摘要

为了准确、高效的预测包壳峰值温度,本文提出了一种卷积神经网络-长短期记忆网络的混合神经网络模型。通过混合神经网络模型,充分提取数据局部特征的同时对时间序列信息进行充分的学习,实现了包壳峰值温度的预测。数据结果表明:卷积神经网络-长短期记忆网络的混合神经网络模型单次事故分析时间降低为0.55 s的同时具备很高的准确性和稳定性。峰值预测精度、序列预测精度、超限概率预测精度、平均绝对百分比误差分别达到了99.527%, 91.098%, 95.371%, 2.522%,均方根误差为49.065。相较于传统的BP神经网络和卷积神经网络方法,卷积神经网络-长短期记忆网络的混合神经网络模型也体现出了明显的优势。