摘要
近些年,人工智能技术已经在图像分类、目标检测、语义分割、智能控制以及故障诊断等领域得到广泛应用,然而某些行业(例如医疗行业)由于数据隐私的原因,多个研究机构或组织难以共享数据训练联邦学习模型.因此,将同态加密(Homomorphic encryption, HE)算法技术引入到联邦学习中,提出一种支持数据隐私保护的联邦深度神经网络模型(Privacy-preserving federated deep neural network, PFDNN).该模型通过对其权重参数的同态加密保证了数据的隐私性,并极大地减少了训练过程中的加解密计算量.通过理论分析与实验验证,所提出的联邦深度神经网络模型具有较好的安全性,并且能够保证较高的精度.
- 单位