基于高斯过程回归的锂离子电池SOC估计

作者:李嘉波*; 魏孟; 叶敏; 焦生杰; 徐信芯
来源:储能科学与技术, 2020, 9(01): 131-137.
DOI:10.19799/j.cnki.2095-4239.2019.0189

摘要

电池状态估计(SOC)在电池管理系统(BMS)尤为重要,由于SOC估计易受温度、荷载、充放电效率等外界因素的影响,因此估计精度很难保证。目前,有很多国内外学者利用机器学习算法进行SOC估计,然而神经网络(NN)的估计精度依赖于样本个数,支持向量机(SVM)在参数寻优时已陷入局部最优。因此为了提高SOC的估计精度,提出了基于高斯过程回归(GPR)的锂离子电池在线的估计方法,根据电池的测量参数,包括电流、电压、温度作为GPR模型的输入,SOC作为模型的输出,进行模型训练,并利用梯度下降法进行参数寻优。通过仿真和恒流充放电实验采集的数据来验证模型的有效性,并与SVM、LSSVM和NN相比,验证了模型的有效性和高精度性。

全文