摘要

针对现有图像超分辨率重建算法中常见的图像边缘模糊、卷积核尺寸选择单一、重建网络结构冗余等问题,提出一种基于深度残差自适应注意力网络的图像超分辨率重建算法。构建嵌套残差网络结构增加残差网络深度,在保证网络拟合性能的前提下提升网络整体性能。建立自适应注意力模块,使用空洞空间金字塔池化模块融合不同尺度的特征图,获得更多的有效特征,恢复图像纹理细节,同时基于选择性卷积核模块和像素注意力模块的并行结构自适应调整卷积核尺寸,并应用注意力机制提取图像高频特征,最终将提取特征通过重建模块实现超分辨率图像重建。在Set5、Set14、BSD100 3个测试数据集上的实验结果表明,与Bicubic、SRCNN、MemNet、DCSR等重建算法相比,该算法的峰值信噪比和结构相似性指标平均提升了0.57 dB和0.006 8,具有更高的超分辨率图像重建质量。

全文