摘要
本发明提供了一种工业设备剩余寿命预测方法、装置、存储介质及设备;其中方法包括如下步骤:获取工业设备的传感器监测数据,对传感器监测数据进行数据预处理并获取训练样本;注意力循环神经网络的模型构建与训练:使用lstm网络和输出全连接层构建注意力循环神经网络;在训练过程中,通过注意力层和lstm网络对多维传感器时间序列中各类传感器时间序列赋予不同权重,将带不同权重的多维传感器时间序列输入lstm网络获取高维特征,最后通过输出全连接层获取预测结果;通过注意力循环神经网络预测剩余寿命。本发明能够对不同的传感器时间序列赋予不同的权重,使模型更加关注与工业设备剩余寿命相关度高的传感器输入,从而提高预测准确率。
- 单位