摘要

针对目前工业中的气门识别方法存在重叠目标漏检率高、检测精度较低、目标包裹度差、圆心定位不准的问题,提出了一种基于双重检测的气门识别方法。首先,运用数据增强对样本进行轻量扩充;其次,以深度卷积网络为基础,加入空间金字塔池化层(SPP)和路径聚合网络(PAN),同时调整先验框,改进损失函数,从而提取气门预测框;最后,以霍夫圆变换(CHT)方法对预测框中的气门进行二次识别,从而达到精准识别气门区域的目的。把所提方法和原YOLOv3、YOLOv4、传统CHT方法进行对比,并采用精确率、召回率、交并比联合进行检测效果评估。实验结果表明,所提出的方法在检测精度和召回率上分别达到了97.1%和94.4%,相较原YOLOv3方法分别提高了2.9个百分点和1.8个百分点;且该方法使目标包裹度更好,目标中心点的定位更准确,其矫正框和真实框的交并比(IOU)达到了0.95,与传统CHT方法相比提高了0.05。所提方法在提高模型识别准确率的同时提高了目标抓取的成功率,在实际应用中有一定的实用价值。