摘要
针对传统BP神经网络在张力减径过程中进行壁厚预测过程时存在误差偏高、稳定性不强、随机初始化权值阈值等缺点,采用麻雀搜索算法对传统BP神经网络的阈值与权值进行全局寻优,以提高BP神经网络在张力减径中壁厚参数预测的准确性和稳定性。同时,以某工厂采集的张力减径过程中的壁厚数据为样本集,采用SSA-BP神经网络进行学习与训练,将得到的结果与传统BP神经网络、GA-BP神经网络的预测结果对比。结果表明,SSA-BP神经网络对张力减径过程中壁厚参数的预测具有较高的准确性与稳定性,其在准确度相较于传统BP神经网络模型提升了58.1%,相较于GA-BP神经网络模型提升了17.5%。
-
单位太原重工股份有限公司; 太原科技大学