摘要

空间co-location(并置)模式是一组空间特征的子集,其实例在空间中频繁地邻近出现。由于空间数据同时存在关联性和异质性,co-location模式实例的分布或在整个研究区域中全局出现(全局co-location模式),或在研究区域的局部区域出现(区域co-location模式),从而提出了多级co-location模式挖掘。当前的多级co-location模式挖掘方法存在两个问题:1)已有的多级co-location模式挖掘方法忽略了模式在空间中的分布特性,未能准确区分全局和区域co-location模式;2)已有的多级模式挖掘方法将全局非频繁co-location模式作为候选区域co-location模式,导致候选区域co-location模式数量过多。针对以上问题,首先,定义了模式的实例分布均匀系数,在考虑模式频繁性的同时考虑了模式在空间中的分布情况,从而正确、高效地识别出全局和区域co-location模式。其次,基于模式的实例分布均匀系数,设计了一个有效的多级co-location模式挖掘算法,提出了有效的剪枝策略以提高算法效率。最后,在真实和合成数据集上进行了广泛的实验,验证了所提方法的正确性和高效性。