摘要
图像聚类是当前的研究热点,非负矩阵分解(non-negative matrix factorization, NMF)算法在图像聚类领域得到了广泛应用。但是单一的NMF算法无法应用于所有数据集,并且NMF算法直接在数据的原始空间进行处理,抗噪能力较差。集成聚类可以解决上述问题,集成聚类将若干个基础聚类结果合成一个一致性结果,不仅可以提高聚类的求解质量,还可以增强算法的鲁棒性。因此本文提出一种层次预处理的NMF加权集成聚类算法。该算法将层次划分、集成聚类和二部图的思想引入到NMF算法中。在预处理阶段,利用层次划分得到聚类数目。之后采用局部加权的方法得到协关联矩阵。最后利用基于二部图的一致性函数进行划分得到最终的聚类结果。在5个数据集上进行实验,验证了本文算法相对于传统算法和其他集成算法的有效性。
- 单位