脑MR图像中普遍存在灰度不均匀性,传统的分割方法无法得到理想的脑组织分割结果.为此提出一种基于互信息最大化准则的变分水平集凸优化分割模型.首先建立最大化图像灰度与标记之间互信息能量的分割模型,并融入偏移场信息;对模型进行水平集表示和凸优化后,再引入边缘指示函数加权的总变差范数;最后采用SplitBregman方法快速求解.实验结果表明,该模型可以得到较准确的脑组织分割和偏移场矫正结果,对噪声和灰度不均匀性有很好的鲁棒性.