摘要
由于同步电机故障样本数量较少,为解决同步电机故障诊断中普遍存在的样本不平衡问题,提出了一种基于条件生成式对抗网络(CGAN)和卷积神经网络(CNN)的同步电机转子绕组匝间短路故障诊断方法。样本,将生成的新样本与原始样本混合并划分训练集和测试集;然后,利用CNN训练平衡后的数据集,充分、精准地提取有效故障特征;最后,在输出端利用Softmax分类器输出故障分类结果。通过实验证明,与非平衡数据集相比,利用平衡数据集后的故障识别准确率十分稳定且达到99.5%以上,同时与平衡的原始样本数据相比,生成样本避免了噪声和其他干扰,故障诊断的准确率也更高。
- 单位