摘要
为了从石化装置大量工艺监测数据中提取有效的故障特征信息,及时地发现故障并准确地识别故障原因,提出了一种基于PCA和RBF神经网络的故障监测与诊断方法。首先获取工况样本,建立PCA模型,降维提取统计特征;设定正常工况SPE统计量阈值,建立在线工况SPE统计量,由此进行故障监测。然后对故障样本进行PCA降维,构建多个RBF神经网络模型,用以实施在线故障诊断,识别故障原因。最后把某石化公司气体分馏装置脱异丁烷单元作为实例,采用Uni Sim Design软件对该单元进行过程动态模拟,获得工况监测样本,建立了故障监测与诊断模型。研究结果表明,所提出的方法不仅能有效地对工况进行状态监测,而且能快速和准确地诊断故障。
-
单位环境与化学工程学院; 燕山大学