摘要
不同角度下小麦籽粒具有不同特征信息,造成分类结果存在差异。采用同一小麦籽粒多角度图片,使用小麦籽粒腹沟向上、腹沟向下和腹沟朝前三个角度图片构建小麦籽粒品种数据集。选取黄淮麦区种植面积较大的6个小麦品种作为试验材料,对比不同模型在小麦籽粒识别上的准确度。采用VGG-16、ResNet-50、Inception-V3卷积神经网络,通过迁移学习的方式建立小麦籽粒品种识别分类模型,验证集识别准确率最高为99.35%,高于不迁移学习的识别方法和传统机器学习的识别方法。在相同的试验条件下,三种模型在使用迁移学习的情况下对小麦籽粒识别的测试集准确率分别达到99.55%、99.77%、99.22%,优于单面特征建模识别。基于3种模型中分别选择最优试验,对其3种角度分别识别。结果表明:腹沟向下的识别率在3种模型中最好,腹沟朝前次之,腹沟向上较差。通过试验发现,采用同一小麦籽粒多角度图片可以更准确地提取小麦籽粒特征,并且有助于分类模型提升品种识别准确率。
- 单位