摘要

为了稳定、精确地评价车内稳态噪声声品质,以车内稳态噪声为研究对象,进行主观评价试验,计算客观心理声学参数并完成了相关性分析。建立基于支持向量回归(Support Vector Regression,SVR)的车内稳态噪声声品质预测模型,并使用遗传算法(Genetic Algorithm,GA)对支持向量回归的超参数进行优化。其后建立基于反向传播神经网络(Back Propagation Artificial Neural Network,BPANN)的声品质预测模型。对比分析发现遗传-支持向量回归(GASVR)模型预测精度高于BP神经网络。结果表明,遗传-支持向量回归适用于车内稳态噪声声品质预测,能够较大提高车内稳态噪声声品质预测精度和工程效率。