摘要

针对垃圾邮件分类问题中词向量学习不充分的问题,文章引入ALBERT动态词向量生成模型,并提出一种将ALBERT动态词向量与循环神经网络相结合的ALBERT-RNN模型。利用公开的垃圾邮件数据集(TEC06C),对传统统计学模型与4种不同RNN结构的ALBERT-RNN模型进行了对比实验,并用Focal Loss方法对交叉熵损失函数进行了优化。实验结果表明,使用Focal Loss优化的ALBERT-LSTM模型在TEC06C数据集上达到了较高的准确率(99.13%)。