摘要
针对统计学模型难以很好地对非线性、非平稳的大坝变形做出预测的情况,引入人工智能算法,融合经验模态分解法(EMD)、遗传算法(GA)优化的极限学习机(ELM)和ARIMA误差修正模型,构建大坝变形预测模型。首先利用EMD进行监测数据的分解和重构,使其平稳化并得到有物理意义的本征模函数和残差序列;再用GAELM对分解结果进行分析预测;最后用ARIMA模型对预测结果的残差进行误差修正。以一混凝土堆石坝为例,利用优化算法构建的大坝变形预测模型对其进行分析预测,分析结果表明,相较于传统单一算法,EMD-GAELM-ARIMA模型算法预测精度更高,在大坝变形预测中具有可行性。
- 单位