摘要

为解决农作物遥感分类易混淆的问题,准确获取玉米种植结构信息,提出了一种能够充分利用高时间分辨率和中高空间分辨率数据优势的多源遥感数据玉米提取方法。以沈阳为研究区域,利用S-G滤波重构MODIS-EVI时序曲线提取物候特征,同时利用EVI转换模型平衡Landsat-8、Sentinel-2、GF-1与MODIS之间的EVI差异构建了30 m分辨率的时序数据,采用决策树方法,基于MODIS物候特征对多源时序数据分类,逐层掩膜水稻、大豆等易混淆地类获取玉米提取结果,并采用决策树与混合像元分解结合的方法进一步提高玉米提取结果的精度。结果表明:基于多源转化遥感数据的决策树分类总体精度与Kappa系数分别为92.27%和0.8825,相较于CART决策树、随机森林、最大似然法,其分类总体精度和Kappa系数均有较大幅度的提高,相较于数据未经模型转换的决策树分类的总体精度和Kappa系数分别提高4.59个百分点和0.0663。决策树分类后结合混合像元分解的玉米提取总精度提高至95.98%,玉米分类精度得到进一步提高。

全文