摘要
现实世界中的社交网络、合作者网络、邮件网络等诸多复杂系统均可抽象为动态信息网络。动态信息网络具有时序、复杂、多变的特征,分析其网络结构随时间演化的过程,尤其演化过程中出现的异常现象,对理解复杂系统的行为倾向于演化趋势具有重要意义。致力于动态信息网络中异常结构演化过程的发现,通过角色定义刻画网络的结构特征,提出了角色演化异常(role evolving outliers,REOutliers)的概念,并给出了基于模式挖掘的角色演化异常发现算法(pattern-based role evolving outliers detection,P-REOD)。该算法挖掘整个网络中角色随时间演化的频繁模式,通过比较节点到频繁模式的相异程度进行REOutliers发现。实验表明,该算法能够进行有效的角色演化异常发现。
- 单位