摘要

采空区智能充填是煤炭资源绿色安全智能高效开采的重要方向,其关键在于对井下采空区矸石充填过程进行智能决策与控制。以采空区充填后围岩应力及变形作为监测指标,本论文建立了一种采空区智能充填深度神经网络算法,该算法可以通过输入煤层埋深、厚度、工作面长度、直接顶厚度等关键基本参数,进行相应条件下不同充填方案的采场应力及围岩变形计算分析。将FLAC3D模拟400种不同条件下的充填开采结果作为数据集,对建立的智能充填深度神经网络算法进行训练测试,并与其余三种不同算法进行对比分析。结果表明:建立的智能充填深度神经网络算法总体优于随机森林、决策树和多元线性回归算法,每组数据运算平均速度仅为0.013s;智能充填深度神经网络算法计算的顶板最大变形、工作面煤壁压力峰值、巷道超前支护距离等关键参数误差均值介于2%~8%之间;应用该算法针对现场实际条件进行测试,结果与现场实际结果基本吻合,表明该算法科学可行。本研究对煤矿绿色智能开采具有重要意义与价值。