在机器人路径规划与避障算法中,遗传算法具有快速全局搜索能力,但是没有利用系统中反馈的信息。蚁群算法具有很好的信息反馈性,但是由于初期信息素匮乏导致求解速度较慢,易陷入局部最优。提出了一种动态融合的方法,在算法初期通过遗传算法生成蚁群算法的初始信息素分布,后期采取蚁群算法动态融合遗传算子的方法。通过路径规划仿真及实验分析,该动态融合算法不仅提高了收敛速度,而且改善了蚁群算法易陷入局部最优的问题;同时引入了动态避障策略,从而达到了更好的路径规划效果。