摘要

为解决人体表面肌电信号(EMG)误差较大导致手势识别准确率低的问题,提出了一种将手指尖与关节相对于腰部尾椎位置的惯性运动信号与手臂的EMG进行融合,提取新的手势特征集并利用改进禁忌搜索优化后的反向传播(BP)神经网络分类识别。实验结果表明,该特征集相比于传统的肌电特征集准确率提高了8.5%,优化后的BP神经网络相比于优化前准确率提高了12.33%,手势识别综合准确率可达99.75%。

全文