摘要
目的:融合PET/CT/MRI医学图像,使结果图像尽可能包含更多边缘和纹理特征等信息,以更好地区分病变、肿瘤与正常组织器官,为疾病诊断提供更多的有用信息。方法:提出一种基于非下采样剪切波变换(NSST)和脉冲耦合神经网络(PCNN)模型的融合方法。首先,根据图像局部区域能量和,对图像NSST低频系数进行加权融合;然后,根据PCNN神经元的点火次数,选择图像NSST高频方向系数;最后,通过逆NSST变换,得到融合后的图像。结果:分别对7组MRI/PET和CT/PET图像进行融合实验,其结果图像具有很好的视觉效果,且在互信息、边缘相似性、梯度相似性及空间频率4个指标综合评价中较其它算法更优。结论:本方法可以自适应捕获边缘和纹理信息,具有良好的融合效果。
- 单位