摘要
为了解决随机采样算法在结构化道路无人驾驶应用中无法优化收敛的问题,采用渐进优化的采样算法框架设计符合驾驶需求的规划算法。针对渐进优化算法的耗时问题,首先选择不需要Steer(转向函数)的SST算法作为基础框架以规避求解边界值问题。其次,算法融入"Anytime"策略以提高优化解的利用率。再次,改进的闭环控制策略能减少车辆的实际轨迹与规划路径的误差。在设计的闭环策略中,应用4-D车辆运动模型以保证规划路径符合车辆的实际运动轨迹。为了保证驾驶的安全和舒适,设计了一个综合四重因素的代价函数,且根据不同的驾驶场景调整相应的权重参数。最后,利用真实的无人车在无人驾驶城市测试道路上进行测试,测试场景包括前方静态障碍物躲避、前方动态障碍物跟随以及超车和复合动静态障碍物。测试中,采用车辆的速度和转向数据代表算法的优化收敛特性和运动平稳性。研究结果表明:设计的算法能在时速30km·h-1下完成避障、跟车、超车等机动;无人车在跟驰决策下可保持30km·h-1的最高速度,在避障过程中可实现最高15km·h-1的速度,在跟车决策下可根据前车速度变换自身速度以保持合理的车距和运动平滑性。
-
单位武汉大学; 武汉大学测绘遥感信息工程国家重点实验室