摘要
目的 构建肠道寄生虫卵的粪检显微图像数据集,建立一个深度学习模型,为肠道寄生虫疾病辅助诊断提供技术支撑。方法 利用显微镜和数码相机采集12种肠道寄生虫虫卵显微图像,经预处理后对虫卵的类别和位置进行标注,形成粪检显微图像数据集。以掩膜区域卷积神经网络深度学习模型作为框架,对标定框回归、分类、掩膜进行训练,并评估其性能。结果 构建的图像数据集共6 299张图片,涵盖了10 944个虫卵图像。经测试建立的深度学习模型总体识别准确率为90.20%,12种虫卵的准确率为58.65%(曼氏迭宫绦虫卵)~100.00%(蛲虫卵)。结论 构建肠道寄生虫卵的显微图像数据集和利用卷积神经网络建立肠道寄生虫卵显微图像的识别模型可为寄生虫相关疾病的辅助诊断提供技术支撑。
- 单位