摘要
增量学习是缩小当前人工智能和人类智能间差距的关键技术,指智能体像人类一样从不稳定数据流中顺序学习多个任务,且不发生遗忘。目标检测是计算机视觉领域的核心任务之一,是计算机理解图像的基石。因此,增量目标检测问题具有重要的研究意义和实际意义。尽管增量学习在图像分类中取得了不错的成果,但基于目标检测的增量学习研究还处于初级阶段。这是因为目标检测相比图像分类更加复杂,它需要同时解决分类和边框回归的问题。不少研究者为解决此问题做了很多努力,但大多数工作都只关注如何保留已学习任务的性能,忽略了模型对新任务的快速适应能力,而这正是增量学习的关键要求。基于大脑的记忆机制,人类可以在学习中不断地提取知识以更好更快地学习新任务,不发生遗忘。受此启发,提出了一种融合编解码记忆重放机制的增量元学习方法。该方法对已学习样本的特征向量进行编码存储和解码重放,从而将不稳定数据流近似为动态稳定数据集,缓解了遗忘问题。同时,设计了一个双循环在线元学习策略,模型在内循环分别基于多批次新旧混合数据进行随机梯度更新,最后在外循环进行元学习,从而获得多任务间的共同结构,使模型具有良好的泛化性能,能够快速适应学习中遇到的新任务。在大型的公开数据集PASCAL VOC和MS COCO上设置了3种增量目标检测实验环境来评估所提算法。实验结果表明,所提算法与最先进的方法相比体现出了具有竞争力的性能,证明了其可以帮助模型更好地抵抗遗忘,具有更好的泛化性能。所提算法基于梯度更新,与模型无关,因此其可以与其他检测框架结合,具有强适应性。
-
单位复杂系统管理与控制国家重点实验室; 中国科学院大学; 中国科学院自动化研究所