面向设备开关图像识别的改进Faster R-CNN

作者:宋旭峰; 蒋梦姣; 周怡伶; 吉俊杰; 陆晓翔*
来源:计算机系统应用, 2022, 31(10): 211-224.
DOI:10.15888/j.cnki.csa.008753

摘要

在大型工业厂房中,由于设备控制开关种类繁多、数量庞大,在日常的运维过程中,操作规程的繁杂性和人为判断的主观性可能导致操作失误,造成严重后果.为辅助操作人员准确判断设备开关状态是否正确,提出了面向设备开关状态识别的改进Faster R-CNN.首先,使用膨胀残差网络作为特征提取网络,在ResNet50中引入多分支膨胀卷积,融合不同感受野的信息;其次,改进特征金字塔网络,在原网络上增加一条自底向上的特征增强分支,融合多尺度的特征信息;然后,使用K-means++算法对开关边界框聚类,设计适合设备开关的候选框尺寸;最后,使用Soft-NMS代替非极大值抑制算法NMS来降低开关重叠对检测效果的影响,增强抑制重叠候选框的能力.在开关状态数据集上,改进Faster R-CNN的均值平均精度(mAP)达到了91.5%,并且已实际应用于抽水蓄能电站日常运维的设备开关状态辅助识别,满足复杂场景下的智能监管需求.

  • 单位
    华东宜兴抽水蓄能有限公司

全文