基于GA-LSTM的酿酒葡萄霜霉病预测方法研究

作者:施爱平; 钱震威; 李英豪; 冯亮
来源:中国农机化学报, 2023, 44(10): 144-151.
DOI:10.13733/j.jcam.issn.2095-5553.2023.10.021

摘要

随着我国贺兰山东麓地区葡萄园的大量兴建和大规模引种,各个葡萄园内出现了以霜霉病为典型的严重的病虫害问题。针对目前酿酒葡萄霜霉病精确预测手段缺乏的问题,提出一种基于遗传算法改进长期和短期记忆神经网络的预测模型。将遗传算法(GA)加入长短期记忆神经网络(LSTM)预测模型的参数调节环节中,通过优化算法代替人工手动调参在超参数搜索空间中不断迭代得到最优超参数组合最终确定模型。再建立基于霜霉病—气象时序数据的手动调参LSTM模型和BP神经网络模型,将三种模型在测试集上进行对比试验。GA-LSTM模型的预测结果均方根误差、均方误差、平均绝对误差分别为0.410 3、0.168 4、0.245 0,均小于LSTM模型和BP神经网络模型。预测结果表明LSTM在时间序列问题的应用中预测性能优于BP神经网络模型,使用遗传算法对LSTM模型的超参数选择环节进行优化,最终得到的超参数组合优于手动调参的LSTM模型得到的超参数组合。

全文