自适应鲁棒图形模糊聚类分割算法

作者:吴成茂; 孙佳美
来源:华中科技大学学报(自然科学版)科技大学, 2019, 47(04): 115-120.
DOI:10.13245/j.hust.190420

摘要

针对图形模糊聚类算法缺乏噪声抑制能力的不足,提出基于鲁棒距离的自适应图形模糊聚类分割算法.首先,将邻域像素灰度信息嵌入图形模糊聚类目标函数,得到鲁棒图形模糊聚类分割算法.然后,利用鲁棒距离代替鲁棒图形模糊聚类目标函数中的平方欧氏距离,并对该鲁棒聚类中正则因子采用当前样本与邻域信息均值之偏差进行自适应调节.最后,利用拉格朗日乘子法获得自适应鲁棒图形模糊聚类迭代表达式.灰度图像及其噪声干扰图像的分割测试结果表明:该分割算法相比图形模糊聚类算法、鲁棒图形模糊聚类算法以及现有的鲁棒模糊聚类算法等具有更强的分割能力和抑制噪声的能力.

全文