当前机器学习算法应用于iOS平台恶意软件检测的研究较少、公开样本数据集获取难、静态检测误报率高。因此提出一种改进的ID3信息增益算法的动态恶意软件检测方法。首先创建数据集,使用改进的ID3信息增益算法选取前40个API调用序列组成特征向量并构建决策树,然后构建测评指标对实验进行分析和验证。实验结果表明,本文方法具有较好的检测率,与改进前的算法相比准确率提高了2.5%,可有效地对恶意软件进行动态识别。